Generalizations of Sherman’s Theorem by Taylor’s Formula

نویسندگان

  • SLAVICA IVELIĆ BRADANOVIĆ
  • NAVEED LATIF
  • JOSIP PEČARIĆ
چکیده

Extensions of Sherman’s theorem to convex functions of higher order and to real weights are obtained by using Taylor’s formula. New upper bounds for Sherman’s difference and generalized inequalities are established. Some related Cauchy-type means are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor’s Formula

Generalizations of the classical and perturbed trapezoid inequalities are developed using a new mean value theorem for the remainder in Taylor’s formula. The resulting inequalities for N -times differentiable mappings are sharp.

متن کامل

Modeling Diffusion to Thermal Wave Heat Propagation by Using Fractional Heat Conduction Constitutive Model

Based on the recently introduced fractional Taylor’s formula, a fractional heat conduction constitutive equation is formulated by expanding the single-phase lag model using the fractional Taylor’s formula. Combining with the energy balance equation, the derived fractional heat conduction equation has been shown to be capable of modeling diffusion-to-Thermal wave behavior of heat propagation by ...

متن کامل

A new characterization for Meir-Keeler condensing operators and its applications

Darbo's fixed point theorem and its generalizations play a crucial role in the existence of solutions in integral equations. Meir-Keeler condensing operators is a generalization of Darbo's fixed point theorem and most of other generalizations are a special case of this result. In recent years, some authors applied these generalizations to solve several special integral equations and some of the...

متن کامل

On the Fractional Probabilistic Taylor’s and Mean Value Theorems

In order to develop certain fractional probabilistic analogues of Taylor’s theorem and mean value theorem, we introduce the nth-order fractional equilibrium distribution in terms of the Weyl fractional integral and investigate its main properties. Specifically, we show a characterization result by which the nth-order fractional equilibrium distribution is identical to the starting distribution ...

متن کامل

Some generalizations of Darbo's theorem for solving a systems of functional-integral equations via measure of noncompactness

In this paper, using the concept of measure of noncompactness, which is a very useful and powerful tools in nonlinear functional analysis, metric fixed point theory and integral equations, we introduce a new contraction on a Banach space. For this purpose by using of a measure of noncompactness on a finite product space, we obtain some generalizations of Darbo’s fixed-point theorem. Then, with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017